Sebastian M. Cioabă* (scioaba@math.ucsd.edu), University of California, San Diego, Department of Mathematics, La Jolla, CA 92093-0112, and André Kündgen (akundgen@csusm.edu), California State University, San Marcos, CA 92096-0001. Covering hypergraphs with cuts of minimum total size.
Given a partition $X_{1}, X_{2}, \ldots X_{k}$ of the vertex-set V of a hypergraph H, the k-cut $\left[X_{1}, X_{2}, \ldots, X_{k}\right]$ is the set of all edges of H that intersect each X_{i} for $1 \leq i \leq k$. In this paper we study the problem of covering r-uniform hypergraphs by k-cuts so as to minimize the total sum of the sizes of the cuts, and thus the average number of times an edge is cut.

Let $s_{k, r}(n)$ denote the minimum total size of a k-cut cover of the edges of the complete r-uniform hypergraph on n vertices. For all $2 \leq k \leq r$, we show that $s_{k, r}(n)=\left(s_{k, r}-o(1)\right)\binom{n}{r}$ for some constant $s_{k, r}$ as $n \rightarrow \infty$. When $k=r$, we prove that $s_{r, r}(n)=\binom{n}{r}$ when r is odd, but $\frac{r+2}{r+1} \leq s_{r, r} \leq 2$ when r is even.

A 2-cut $[X, V \backslash X]$ is called stable if X contains no edges. For a given $r \geq 3$, we show that there is a number n_{r} such that for every $n>n_{r}, s_{2, r}(n)$ is uniquely achieved by a cover with $\left\lfloor\frac{n-1}{r-1}\right\rfloor$ stable cuts (and thus $s_{2, r}=r$), and that $c_{1} r 2^{r}<n_{r}<c_{2} r^{4} 2^{r}$. Using known results for $s_{2,2}(n)$ we also determine $s_{2,3}(n)$ exactly for all n. (Received August 06, 2007)

