Harout Aydinian and Éva Czabarka* (czabarka@math.sc.edu), Department of Mathematics, Columbia, SC 29208, and Péter L Erdős and László Székely. M-part L-Sperner families. Preliminary report.
Let $X=X_{1} \cup X_{2} \cup \cdots \cup X_{M}$ be a partition of the n-element underlying set X. A set system $\mathcal{F} \subseteq 2^{X}$ is an M-part Sperner family if for all $E, F \in \mathcal{F}$ such that E is a strict subset of $F, F \backslash E$ is not a subset of any of the X_{i}. It is known (Kleitman, 1965; Katona, 1960) that the size of a 2-part Sperner family cannot exceed the maximum size of a Sperner family, $\binom{n}{\lfloor n / 2\rfloor}$. However, for $M>2$ the situation is quite different, and the maximum size of a family is unknown in the general case.
\mathcal{F} is an M-part L-Sperner family if for any chain $E_{1} \subset E_{2} \subset \cdots \subset E_{L+1}$ of size $L+1$ in the family, $E_{L+1} \backslash E_{1}$ is not a subset of any of the X_{i}. Füredi, Griggs, Odlyzko and Shearer (1987) determined the maximum size of such a family for $M=L=2$ and posed the question of maximal size in the general case.

We define \mathcal{F} is an M-part $L_{1}, L_{2}, \ldots, L_{M}$-Sperner family if for any $j \in\{1, \ldots, M\}$ for any chain $E_{1} \subset E_{2} \subset \cdots \subset E_{L_{j}+1}$ of size $L_{j}+1$ in the family, $E_{L_{j}+1} \backslash E_{1}$ is not a subset X_{j}.

We will present some results and conjectures about these generalizations. (Received August 07, 2007)

