Let Γ be a triangle-free distance-regular graph with valency $k \geq 3$ and diameter $d \geq 4$. The well known Terwilliger Tree Bound implies that the multiplicity of an eigenvalue is either 1 or at least k, and if equality holds, then the girth is ≤ 5.

Let us assume Γ has an eigenvalue θ with multiplicity k. An important class of such examples comes from distanceregular graphs whose association scheme determined by its distance matrices is formally self-dual. Many interesting properties of such graphs have already been established, for example a parametrization with $d+1$ parameters, namely with the cosine sequence $\omega_{0}, \omega_{1}, \ldots, \omega_{d}$ corresponding to the eigenvalue θ.

Our main result is a characterization of the Q-polinomial property. Let us assume $1 \neq \omega_{h}(1 \leq h \leq d)$ and $\omega_{h+1} \neq \omega_{h-1} \neq \omega_{h} \neq \omega_{h+1}(1 \leq h \leq d-1)$. We show that Γ is Q-polynomial with respect to the primitive idempotent E corresponding to θ if and only if

$$
\left(\omega_{1}-\omega_{i-1}\right)\left(\omega_{1}-\omega_{i+1}\right)=\left(\omega_{2}-\omega_{i}\right)\left(1-\omega_{i}\right), \quad \text { for } \quad \text { all } i \in\{3, \ldots, d-1\}
$$

or equivalently,

$$
\left(\omega_{1}-\omega_{2}\right)\left(\omega_{1}-\omega_{4}\right)=\left(\omega_{2}-\omega_{3}\right)\left(1-\omega_{3}\right)
$$

This is a joint work with A. Žitnik. (Received August 07, 2007)

