1030-13-245 Amanda Beecher (amanda.beecher@usma.edu) and Alexandre Tchernev* (tchernev@math.albany.edu). Multigraded modules and the topology of representable matroids. Preliminary report.

Let $R = \Bbbk[x_1, \ldots, x_m]$ be a polynomial ring over a field \Bbbk with the standard \mathbb{Z}^m -grading (multigrading), let $\Phi : E \to G$ be a multihomogeneous free presentation of a multigraded Noetherian R-module L, and let S be a multihomogeneous basis of E. In recent work the second author has used this data to give an explicit construction of a multigraded free resolution (the *T*-resolution) $T_{\bullet}(\Phi, S)$ of the module L that extends the map Φ . The components of this T-resolution are directly obtained from a family of \Bbbk -vector spaces (the *T*-spaces) T_A , where the index A is a subset of S and ranges through the so-called T-flats of the matroid \mathbf{M} represented by Φ over \Bbbk .

The first author has shown in her thesis that by choosing a linear ordering on the elements of the set S, one can construct a canonical isomorphism from the only nonzero reduced homology of the reduced broken circuit complex $\overline{BC}((\mathbf{M}|A)^*)$ to the T-space T_A . In this talk we will discuss to what extend are the differentials of the T-resolution of the *R*-module *L* determined by the topology of these reduced broken circuit complexes. (Received August 04, 2007)