1030-94-175 Sunghyu Han* (sunghyu@yonsei.ac.kr), Department of Mathematics, University of Louisville, 328 Natural Sciences Building, Louisville, KY 40292, and Jon-Lark Kim (j1.kim@louisville.edu), Department of Mathematics, University of Louisville, 328 Natural Sciences Building, Louisville, KY 40292. Upper Bounds for the length of s-Extremal Codes over \mathbb{F}_2 , \mathbb{F}_4 , and $\mathbb{F}_2 + u\mathbb{F}_2$.

Our purpose is to find an upper bound for the length of s-extremal codes over \mathbb{F}_2 (resp. \mathbb{F}_4) when $d \equiv 2 \pmod{4}$ (resp. $d \operatorname{odd}$). This question is left open in [E. P. Bautista et al., s-extremal additive \mathbb{F}_4 codes, Advances in Mathematics of Communications, 1, pp. 111–130, 2007] and [P. Gaborit, A bound for certain s-extremal lattices and codes, preprint]. More precisely, we show that there is no s-extremal binary code of length $n \geq 21d - 82$ if d > 6 and $d \equiv 2 \pmod{4}$. Similarly we show that there is no s-extremal additive \mathbb{F}_4 code of length $n \geq 13d - 26$ if d > 1 and d is odd. We also define s-extremal self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$ and derive an upper bound for the length of an s-extremal self-dual code over $\mathbb{F}_2 + u\mathbb{F}_2$ using the information on binary s-extremal codes. (Received August 01, 2007)