1042-03-56James H. Schmerl* (schmerl@math.uconn.edu), Department of Mathematics, University of
Connecticut, Storrs, CT 06269-3009. ω -models of Finite Set Theory.

(This is joint work with Ali Enayat and Alber Visser.) Let $\mathsf{ZF}_{\mathsf{fin}}$ be the theory obtained from the usual formulation of ZF by replacing the Axiom of Infinity with its negation. Within each model $\mathfrak{M} \models \mathsf{ZF}_{\mathsf{fin}}$ there is a naturally defined model $\mathbb{N}^{\mathfrak{M}}$ of Peano Arithmetic. If $\mathbb{N}^{\mathfrak{M}}$ is the standard model, then we say that \mathfrak{M} is an ω -model. A method for constructing ω -models of $\mathsf{ZF}_{\mathsf{fin}}$ will be presented, leading to results such as: (1) For each group G there is an ω -model whose automorphism group is isomorphic to G. (2) For each infinite cardinal κ , there are 2^{κ} nonisomorphic rigid ω -models of cardinality κ . (3) There are infinitely many nonisomorphic, highly recursive, pointwise-definable ω -models. In regard to (3), $\mathfrak{M} = (M, E)$ is highly recursive if M and E are recursive and so is the function $x \mapsto |\{y \in M : \langle y, x \rangle \in E\}|$. In contrast to (3) there is: (4) Every recursive model of $\mathsf{ZF}_{\mathsf{fin}}$ is an ω -model. (Received August 05, 2008)