1042-11-118 Dragos Ghioca, Thomas J. Tucker and Michael E. Zieve* (zieve@math.rutgers.edu). Intersections of polynomial orbits, and a dynamical Mordell-Lang conjecture.
Pick nonlinear $f, g \in \mathbb{C}[x]$, and arbitrary $x_{0}, y_{0} \in \mathbb{C}$. I will discuss the following result: if the orbits $\left\{x_{0}, f\left(x_{0}\right)\right.$, $\left.f\left(f\left(x_{0}\right)\right), \ldots\right\}$ and $\left\{y_{0}, g\left(y_{0}\right), g\left(g\left(y_{0}\right)\right), \ldots\right\}$ have infinite intersection, then f and g have a common iterate.

The main ingredients in the proof are Siegel's theorem on integral points on curves, specialization arguments, and various new and old results on functional decomposition of polynomials. I will also present a general framework which includes both this result and the Mordell-Lang conjecture. (Received August 14, 2008)

