1042-11-200 Susil Kumar Jena* (susil_kumar@yahoo.co.uk), Dept. of Electronics and Telecom. Engineering, KIIT University, Bhubaneswar, Orissa 751024, India. THE DIOPHANTINE EQUATION $A^{4}+B^{4}+C^{4}=2 D^{n}$ AND BEYOND.
The Diophantine equation $A^{4}+B^{4}+C^{4}=2 D^{n}$ has solutions in integers for (A,D,C,D) when n is 2,4 or twice of an odd positive integer. This result is got from a Diophantine identity relating to the Diophantine equation $A^{4}+B^{4}+C^{4}=2 D^{2}$. Very interesting results are obtained if we include the Gaussian integers for A, B, C and D. In this paper, we will answer if the title equation has finite or infinite number of integral solutions for each of the values that n can take. While producing many new results, we will raise a lot of important questions for further analysis and explore the scope of possible applications for the said equation. (Received August 19, 2008)

