1042-46-175 Steven M. Heilman* (smh82@cornell.edu), 310 Malott Hall, Ithaca, NY 14853-4201, and Robert S. Strichartz (str@math.cornell.edu), 310 Malott Hall, Ithaca, NY 14853-4201. Homotopies of eigenfunctions, and the spectrum of the Laplacian on the Sierpinski carpet. Preliminary report.

Consider a family of bounded domains Ω_t in the plane (or more generally any Euclidean space) that depend analytically on the parameter t, and consider the ordinary Neumann Laplacian Δ_t on each of them. Then we can organize all the eigenfunctions into continuous families $u_t^{(j)}$ with eigenvalues $\lambda_t^{(j)}$ also varying continuously with t, although the relative sizes of the eigenvalues will change with t at crossings where $\lambda_t^{(j)} = \lambda_t^{(k)}$. We call these families <u>homotopies</u> of eigenfunctions. We study two explicit examples. The first example has Ω_0 equal to a square and Ω_1 equal to a circle; in both cases the eigenfunctions are known explicitly, so our homotopies connect these two explicit families. In the second example we approximate the Sierpinski carpet starting with a square, and we continuously delete subsquares of varying sizes. (Received August 18, 2008)