homothetic planar sections through given points. Preliminary report.
Let K_{1} and K_{2} be n-dimensional closed convex sets in Euclidean space $\mathbb{R}^{n}, n \geq 4$, and let $p_{1} \in \operatorname{int} K_{1}$ and $p_{2} \in \operatorname{int} K_{2}$ be given points. If for any choice of a 2-dimensional subspace L of \mathbb{R}^{n} the planar sections $\left(p_{1}+L\right) \cap K_{1}$ and $\left(p_{2}+L\right) \cap K_{2}$ are homothetic, then K_{1} and K_{2} are homothetic. Furthermore, if there is a homothety f such that $f\left(K_{1}\right)=K_{2}$ and $f\left(p_{1}\right) \neq p_{2}$ then K_{1} and K_{2} are convex cones or bd K_{1} and bd K_{2} are convex quadric surfaces. (Received August 11, 2008)

