1049-32-43 **John Wermer***, Department of Mathematics, Brown University, Providence, RI. A Cauchy-Riemann equation for generalized analytic functions.

In (1), "Generalized Analytic Functions", TAMS 81 (1956), R.Arens and I. Singer studied the following generalization of the disk algebra. T^2 is the 2-torus and α is a positive irrational number A_{α} is the algebra of all continuous functions on T^2 with Fourier coefficients in the half-plane $:n + m\alpha| \ge 0$. The maximal ideal space of A_{α} identifies with the set M of $(z, w)||w| = |z|^{\alpha}, |z| \le 1$ in C^2 . Helson and Lowdenslager in 1959 developed a rich theory of A_{α} . Define the differential operator $X = \bar{z}\delta_{\bar{z}} + \alpha \bar{w}\delta_{\bar{w}}$ on C^2 . X is well-defined on the 3-manifold M. (0,0). Using results in (1), we prove Theorem: A_{α} consists of all f in $C(T^2)$ which have a continuous extension F to M such that X(F) = 0 in the sense of distributions on M minus (0,0). (Received February 12, 2009)