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A pro-C∗-algebra is a limit of C∗-algebras in the category of topological ∗-algebras (and continuous ∗-homomorphisms).

Such algebras were studied under various names (LMC∗-algebras, locally C∗-algebras, and σ-C∗-algebra in the metrizable

case) by Schmüdgen [8], Inoue [6], Arveson [1], Phillips [7], and El Harti [5].

In the first half of the talk, we consider commutative unital pro-C∗-algebras. It turns out that the Gelfand duality

can be extended to a close relative of the so-called k-spaces (cf. [3.3, 2], [9], and [3]), and the topological ∗-algebras thus

obtained are commutative unital pro-C∗-algebras.

In the second half of the talk, we focus on the functor (−)b that assigns to a pro-C∗-algebra the C∗-algebra of its

bounded elements. For commutative pro-C∗-algebras, this functor is the dual of the the Stone-Čech-compactification.

We show that (−)b preserves exact sequences, and it is a coreflector.
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[8] Konrad Schmüdgen. Über LMC-Algebren. Math. Nachr., 68:167–182, 1975.

1



[9] N. E. Steenrod. A convenient category of topological spaces. Michigan Math. J., 14:133–152, 1967. (Received March 01, 2009)

2


