Alvaro Lozano-Robledo* (alozano@math.uconn.edu), Department of Mathematics, 196
Auditorium Road, University of Connecticut, U-3009, Storrs, CT 06269. Bernoulli-Hurwitz
numbers, Wieferich primes and Galois representations.

Let K be a quadratic imaginary number field with discriminant $D_K \neq -3, -4$ and class number one. Fix a prime $p \geq 7$ which is unramified in K. Given an elliptic curve A/\mathbb{Q} with complex multiplication by K, let $\overline{\rho_A}$: $\operatorname{Gal}(\overline{K}/K(\mu_{p^{\infty}})) \to \operatorname{SL}(2,\mathbb{Z}_p)$ be the representation which arises from the action of Galois on the Tate module. We will show that, for all but finitely many inert primes p, the image of a certain deformation ρ_A : $\operatorname{Gal}(\overline{K}/K(\mu_{p^{\infty}})) \to \operatorname{SL}(2,\mathbb{Z}_p[[X]])$ of $\overline{\rho_A}$ is "as large as possible", that is, it is the full inverse image of a Cartan subgroup of $\operatorname{SL}(2,\mathbb{Z}_p)$. If p splits in K, then the same result holds as long as certain Bernoulli-Hurwitz number is a p-adic unit which, in turn, is equivalent to a prime ideal not being a Wieferich place. The proof rests on the theory of elliptic units of Robert and Kubert-Lang, and on the two-variable main conjecture of Iwasawa theory for quadratic imaginary fields. (Received September 03, 2009)