1057-94-437 **Hai Q Dinh*** (hdinh@kent.edu), Department of Mathematical Sciences, Kent State University, 4314 Mahoning Avenue, Warren, OH 44483. *Repeated-Root Constacyclic Codes Of Prime Power* Length Over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$.

All constacyclic codes of length p^s over the ring $\mathcal{R} = \mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$ are investigated. The units of the ring \mathcal{R} are of the forms γ , and $\alpha + u\beta$, where α, β, γ are nonzero elements of \mathbb{F}_{p^m} , which provide $p^m(p^m - 1)$ such constacyclic codes. First, the structure and Hamming distances of all constacyclic codes of length p^s over the finite field \mathbb{F}_{p^m} are obtained, and used as a tool to establish the structure and Hamming distances of all $(\alpha + u\beta)$ -constacyclic codes of length p^s over \mathcal{R} . We then classify all cyclic codes of length p^s over \mathcal{R} , and obtain the number of codewords in each of those cyclic codes. Finally, an one-to-one correspondence between cyclic and γ -constacyclic codes of length p^s over \mathcal{R} is constructed via a ring isomorphism, that carries over the results about cyclic codes correspondingly to γ -constacyclic codes of length p^s over \mathcal{R} . (Received January 26, 2010)