1051-13-101 Kuei-Nuan Lin* (link@purdue.edu). Rees Algebras of diagonal ideals.

Let X be an m by n matrix of variables over a field k. R and S are rings defined by the minors of X. We consider the diagonal ideal \mathbb{D} , the kernel of the diagonal map. By the work of Simis-Ulrich, we know the defining equations of special fiber of \mathbb{D} . When R = S, the special fiber is known as a homogeneous coordinate ring of secant variety of the determinantal variety $\mathcal{Z}(\operatorname{Spec}(R))$. Some of the cases show that the fiber ring is k[X]. It is nature to ask whether \mathbb{D} is an ideal of linear type, which means that the natural map from the symmetric algebra of \mathbb{D} , $\operatorname{Sym}(\mathbb{D})$, onto the Rees algebra of \mathbb{D} , $\mathcal{R}(\mathbb{D})$, is an isomorphism. We aim at a more refined study of the ideal defining $\mathcal{R}(\mathbb{D})$. By knowing the defining equations, we can show that $\mathcal{R}(\mathbb{D})$ is Cohen-Macaulay and \mathbb{D} is an ideal of linear type. (Received August 19, 2009)