Justin J. Lambright*, Department of Mathematics, Lehigh University, Bethlehem, PA 18015. A combinatorial interpretation of coefficients arising in the quantum polynomial ring.
Let $\left(\ell_{1}, \ldots, \ell_{n}\right)$ and $\left(m_{1}, \ldots, m_{n}\right)$ be two weakly increasing sequences of positive integers. Then we can express the monomial $x_{\ell_{u_{1}}, m_{v_{1}}} \cdots x_{\ell_{u_{n}}, m_{v_{n}}}$ in terms of the natural basis of the quantum polynomial ring $A_{n}(q)$, which consists of monomials of the form $x_{\ell_{1}, m_{w_{1}}} \cdots x_{\ell_{n}, m_{w_{n}}}$ with w maximal in the double coset $W_{I} w W_{J}$. A combinatorial interpretation of the coefficients of the natural basis elements is given in terms of walks in the Bruhat order. (Received August 24, 2009)

