Brendon Rhoades* (brhoades@mit.edu). The Cluster Monomial and Dual Canonical Bases of $\mathbb{Z}\left[x_{11}, \ldots, x_{33}\right]$.
The polynomial ring $\mathbb{Z}\left[x_{11}, \ldots, x_{33}\right]$ has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group $U_{q}\left(\mathfrak{s l}_{3}(\mathbb{C})\right)$. On the other hand, $\mathbb{Z}\left[x_{11}, \ldots, x_{33}\right]$ inherits a basis from the cluster monomial basis of a geometric model of the type D_{4} cluster algebra. We prove that these two bases are equal. As a side effect, we obtain an explicit factorization of every dual canonical basis element of $\mathbb{Z}\left[x_{11}, \ldots, x_{33}\right]$ into irreducible polynomials. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky. (Received August 28, 2009)

