1052-11-187 Michael J. Mossinghoff* (mimossinghoff@davidson.edu), Department of Mathematics, Davidson College, Davidson, NC 28035. Turan's problem on the distance to an irreducible polynomial.
More than 40 years ago, Turán asked if every integer polynomial is 'close' to an irreducible polynomial. More precisely, he asked if there exists an absolute constant C such that for every polynomial $f \in \mathbb{Z}[x]$ there exists an irreducible polynomial $g \in \mathbb{Z}[x]$ with $\operatorname{deg}(g) \leq \operatorname{deg}(f)$ and $L(f-g) \leq C$, where $L(\cdot)$ denotes the sum of the absolute values of the coefficients. This problem remains unsolved. We describe some algorithms used to investigate this question, and show in particular that $C=4$ suffices for monic polynomials with degree less than 35 . We also describe how well our results fit the predictions of a heuristic model. (Received August 27, 2009)

