1052-11-280

Y.-R. Liu, C. V. Spencer and X. Zhao^{*} (x8zhao@math.uwaterloo.ca), Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. A generalization of Meshulam's theorem on subsets of finite abelian groups with no 3-term arithmetic progression.

Let $G \simeq \mathbb{Z}/k_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/k_N\mathbb{Z}$ be a finite abelian group with $k_i|k_{i-1}$ $(2 \le i \le N)$. For a matrix $Y = (a_{i,j}) \in \mathbb{Z}^{R \times S}$ satisfying $a_{i,1} + \cdots + a_{i,S} = 0$ $(1 \le i \le R)$, let $D_Y(G)$ denote the maximal cardinality of a set $A \subseteq G$ for which the equations $a_{i,1}x_1 + \cdots + a_{i,S}x_S = 0$ $(1 \le i \le R)$ are never satisfied simultaneously by distinct elements $x_1, \ldots, x_S \in A$. Under certain assumptions on Y and G, we prove an upper bound of the form $D_Y(G) \le C|G|/N^{\gamma}$ for positive constants C and γ . (Received August 30, 2009)