Y.-R. Liu, C. V. Spencer and X. Zhao* (x8zhao@math. uwaterloo.ca), Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. A generalization of Meshulam's theorem on subsets of finite abelian groups with no 3-term arithmetic progression.
Let $G \simeq \mathbb{Z} / k_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / k_{N} \mathbb{Z}$ be a finite abelian group with $k_{i} \mid k_{i-1}(2 \leq i \leq N)$. For a matrix $Y=\left(a_{i, j}\right) \in \mathbb{Z}^{R \times S}$ satisfying $a_{i, 1}+\cdots+a_{i, S}=0(1 \leq i \leq R)$, let $D_{Y}(G)$ denote the maximal cardinality of a set $A \subseteq G$ for which the equations $a_{i, 1} x_{1}+\cdots+a_{i, S} x_{S}=0(1 \leq i \leq R)$ are never satisfied simultaneously by distinct elements $x_{1}, \ldots, x_{S} \in A$. Under certain assumptions on Y and G, we prove an upper bound of the form $D_{Y}(G) \leq C|G| / N^{\gamma}$ for positive constants C and γ. (Received August 30, 2009)

