1052-14-116Gretchen L. Matthews (gmatthe@clemson.edu), Department of Mathematical Sciences,
Clemson University, Clemson, SC 29634-0975, and Justin D. Peachey* (jpeache@clemson.edu),
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975.
Riemann-Roch spaces of the norm-trace function field. Preliminary report.

The norm-trace function field over the finite field \mathbf{F}_{q^r} is given by $\mathbf{F}_{q^r}(x, y)/\mathbf{F}_{q^r}$ where $N_{\mathbf{F}_{q^r}/\mathbf{F}_q}(x) = Tr_{\mathbf{F}_{q^r}/\mathbf{F}_q}(y)$, meaning the norm of x is equal to the trace of y with respect to the extension $\mathbf{F}_{q^r}/\mathbf{F}_q$. It is a generalization of the Hermitian function field over \mathbf{F}_{q^2} , which is obtained when r = 2. The norm-trace function field has $q^{2r-1} + 1$ places of degree one, including q^{r-1} places P_{0b} and a single place at infinity P_{∞} . In this talk, we determine explicit bases for Riemann-Roch spaces $\mathcal{L}(a_0P_{\infty} + a_1P_{0b_1} + \cdots + a_mP_{0b_m})$ where $1 \leq m \leq q^{r-1}$ and discuss some applications. (Received August 24, 2009)