1052-55-138 **Troy Winfree*** (winfree@math.rochester.edu). Continuous homotopy fixed point spectra: finiteness properties and computations.

Given a closed subgroup G of the Morava stabilizer group S_n , let E_n^{hG} denote the continuous homotopy fixed point spectrum of Devinatz and Hopkins. We examine the case $G = W \mathbb{F}_{p^n}^0$ via computations in the Bockstein spectral sequence $H_c^*((W\mathbb{F}_{p^n}^0)^{p^k}, \mathbb{F}_{p^n}[u^{\pm}]) \Rightarrow H_c^*((W\mathbb{F}_{p^n}^0)^{p^k}, \mathbb{F}_{p^n}[[u_{n-1}]][u^{\pm}])$. At the n = 3 level and for $k \ge 0$ all of the zero-line differentials can be computed. We discuss two consequences: first, that a proposed finiteness result which holds at the n = 2 level cannot be extended to higher n; second, letting V(1) denote a finite spectrum with $BP_*V(1) = BP_*/\langle p, v_1 \rangle$, that if p > 3then $\pi_*(E_3^{h((W\mathbb{F}_{p^3}^0)^{p^k} \times \mathbb{F}_p^{\times})} \wedge V(1))$ is of essentially finite rank. (Received August 25, 2009)