A rooted tree is \(k \)-ary if all non-leaves have \(k \) children; it is complete if all leaves have the same distance from the root. Let \(T \) be the complete ternary tree of depth \(n \). If each edge in \(T \) is labeled 0 or 1, then the labels along the edges of a path from the root to a leaf form a path label in \(\{0, 1\}^n \). Let \(f(n) \) be the maximum, over all \(\{0, 1\} \)-edge-labeled complete ternary trees \(T \) of depth \(n \), of the minimum number of distinct path labels on a complete binary subtree of depth \(n \) in \(T \).

The problem of bounding \(f(n) \) arose in studying a problem in computability theory, where it was hoped that \(f(n)/2^n \) tends to 0 as \(n \) grows. This is true; we show that \(f(n)/2^n \) is \(O(2^{-c\sqrt{n}}) \) for a positive constant \(c \). From below, we show that \(f(n) \geq (1.548)^n \) for sufficiently large \(n \). (Received January 19, 2011)