1060-33-71Siddhartha Sahi* (sahi@math.rutgers.edu), Department of Mathematics, Rutgers University,
Hill Center for the Mathematical Sciences, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019.
Eigenvalues of generalized Capelli operators and binomial coefficients.

Let \mathbb{F} be a real division algebra of dimension d; thus $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}$ and d = 1, 2, 4. The group $G = GL(n, \mathbb{F})$ acts naturally on the space V of $n \times n$ Hermitian \mathbb{F} -matrices. The associated representation of G on the polynomial algebra P = P(V)is multiplicity-free with irreducible submodules P_{λ} indexed by partitions of length $\leq n$.

On the other hand, the space of G-invariant polynomial differential operators on V has a natural basis consisting of the generalized Capelli operators D_{μ} , which are also indexed by such partitions. By Schur's Lemma, D_{μ} acts on P_{λ} by a scalar, which we write as $c_{\lambda\mu}(d)$ to denote its dependence on the division algebra \mathbb{F} .

By an earlier result of the speaker, there is an element $\binom{\lambda}{\mu}_r$ in $\mathbb{Q}(r)$, called the generalized binomial coefficient, such that $c_{\lambda\mu}(d)$ is obtained from it by specializing r = d. We describe a new formula for these coefficients, which shows that they are quotients of two positive integral polynomials in r. (Received March 19, 2010)