One of the central problems of extremal hypergraph theory is the description of unavoidable subhypergraphs, in other words, the Turán problem. Let \(a = (a_1, \ldots, a_p) \) be a sequence of positive integers, \(k = a_1 + \cdots + a_p \). An \(a \)-partition of a \(k \)-set \(F \) is a partition in the form \(F = A_1 \cup \ldots A_p \) with \(|A_i| = a_i \) for \(1 \leq i \leq p \). An \(a \)-cluster \(\mathcal{A} \) with host \(F_0 \) is a family of \(k \)-sets \(\{F_0, \ldots, F_p\} \) such that for some \(a \)-partition of \(F_0 \), \(F_0 \cap F_i = F_0 \setminus A_i \) for \(1 \leq i \leq p \) and the sets \(F_i \setminus F_0 \) are pairwise disjoint. The family \(\mathcal{A} \) has \(2k \) vertices and it is unique up to isomorphisms. With an intensive use of the delta-system method we prove that for \(k > p \) and sufficiently large \(n \), if \(\mathcal{F} \) is a \(k \)-uniform family on \(n \) vertices with \(|\mathcal{F}| \) exceeding the Erdős-Ko-Rado bound \(\binom{n-1}{k-1} \), then \(\mathcal{F} \) contains an \(a \)-cluster. The only extremal family consists of all the \(k \)-subsets containing a given element. (Received January 24, 2011)