Paul M Terwilliger*, Math Department, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706. The Rahman polynomials and the Lie algebra $\mathfrak{s l}_{3}(\mathbb{C})$.
We interpret the Rahman polynomials in terms of the Lie algebra $\mathfrak{s l}_{3}(\mathbb{C})$. Using the parameters of the polynomials we define two Cartan subalgebras for $\mathfrak{s l}_{3}(\mathbb{C})$, denoted H and \tilde{H}. We display an antiautomorphism \dagger of $\mathfrak{s l}_{3}(\mathbb{C})$ that fixes each element of H and each element of \tilde{H}. We consider a certain finite-dimensional irreducible $\mathfrak{s l}_{3}(\mathbb{C})$-module V consisting of homogeneous polynomials in three variables. We display a nondegenerate symmetric bilinear form \langle,$\rangle on V$ such that $\langle\beta \xi, \zeta\rangle=\left\langle\xi, \beta^{\dagger} \zeta\right\rangle$ for all $\beta \in \mathfrak{s l}_{3}(\mathbb{C})$ and $\xi, \zeta \in V$. We display two bases for V; one diagonalizes H and the other diagonalizes \tilde{H}. Both bases are orthogonal with respect to \langle,$\rangle . We show that when \langle$,$\rangle is applied to a vector in each$ basis, the result is a trivial factor times a Rahman polynomial evaluated at an appropriate argument. We also obtain two seven-term recurrence relations satisfied by the Rahman polynomials. This is joint work with Plamen Iliev. (Received January 20, 2011)

