Let Ω be a bounded domain in \mathbb{R}^2, $u_+ = u$ if $u \geq 0$, $u_+ = 0$ if $u < 0$, $u_- = u_+ - u$. In this talk we study the existence of solutions to the following problem arising in the study of a simple model of a confined plasma

\[
(P_\lambda) \begin{cases}
\Delta u - \lambda u_- = 0, & \text{in } \Omega, \\
 u = c, & \text{on } \partial \Omega, \\
 \int_{\partial \Omega} \frac{\partial u}{\partial \nu} \, ds = I,
\end{cases}
\]

where ν is the outward unit normal of $\partial \Omega$ at x, c is a constant which is unprescribed, and I is a given positive constant.

The set $\Omega_\rho = \{ x \in \Omega, \ u(x) < 0 \}$ is called plasma set. Existence of solutions whose plasma set consisting of one component and asymptotic behavior of plasma set were studied by Caffarelli and Friedman for large λ. Under the condition that the homology of Ω is nontrivial we obtain in this paper by a constructive way that for any given integer $k \geq 1$, there is $\lambda_k > 0$ such that for $\lambda > \lambda_k$, (P_λ) has a solution with plasma set consisting of k components. (Received January 16, 2011)