1125-01-80 Donald A. Sokol* (donsokol7@gmail.com), 11S047 Palisades Road, Burr Ridge,, IL 60527. Plimpton 322: The Rosetta Stone of the Integer (Pythagorean) Triple.
The Babylonian Clay Tablet (circa 1800-1700 B.C.) identified presently as Plimpton 322 in the museum at Columbia University represents the opportunity for a new look at the Pythagorean Theorem. The tablet has 15 lines of information related to the relationship, $a^{2}+b^{2}=c^{2}$. Line 11 contains the values $c=75$ and $b=45$ of a integer triple in a, c and b. The value of "a", although missing, has been identified by numerous others as 60 . These values are multiples of the prime integer triple $4,5,3$ and the multiplier is 15 . And $60,75,45$ are also multiples of $1.0,1.25, o .75$, and the multiplier is 60 (The triangular number for one is 1). The result is a:60 as Nt : 15 and $\mathrm{a}=4 \mathrm{Nt}$, where Nt is a triangular number, and "a" is the even value in an integer triple. The modifier for accommodating changes in x and y in an appropriate spread sheet mapping is $\mathrm{y}(\mathrm{x}-1) / 2$; so that $\mathrm{a}=4[\mathrm{y}(\mathrm{y}+1) / 2+\mathrm{y}(\mathrm{x}-1) / 2]=2(\mathrm{x}+\mathrm{y}) \mathrm{y}$. Also, $\mathrm{c}=\mathrm{a}+\mathrm{x}^{2}$ and $\mathrm{b}=\mathrm{c}-2 \mathrm{y}^{2}$. Square roots and negative numbers, avoided by both Babylonians and Greeks address scale and orientation. (Received July 12, 2016)

