The complexity of a set of natural numbers A can be measured by the growth rate of $K(A \upharpoonright n)$, where K is Kolmogorov complexity and $A \upharpoonright n$ is A restricted to n . An order function is a nondecreasing unbounded function. We define $K_{\text {order }}$ to be the collection of sets A such that $K(A \upharpoonright n)$ is bounded by $p(K(n))$ for some order function p. We say that a set is strongly nontrivial if it is not a member of $K_{\text {order }}$. Using a modification of the Sack's minimal degree construction, we show there is a strongly nontrivial Δ_{2}^{0} set of minimal Turing degree. (Received September 20, 2016)

