1125-05-1007 **Katsuhiro Ota*** (ohta@math.keio.ac.jp), Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan. *Small theta subgraphs in sparse graphs.*

A theta graph is a graph consisting of three internally disjoint paths with common end vertices. By considering a BFS tree in a graph, it is not difficult to prove that if G is a graph of order n with minimum degree 3, then G contains a theta subgraph of order at most $6 \log_2 n$. Note that the minimum degree condition is sharp, and there exists a graph of order n with average degree 3 which does not contain a theta subgraph of order o(n).

In this talk, we consider slightly weaker conditions, which ensure the existence of small theta subgraphs.

(1) Let $\alpha > 0$ and let G be a graph of order n with average degree at least $3 + \alpha$. Then, G contains a theta subgraph of order at most $(\frac{9}{\alpha} + 3) \log_2 n$.

(2) Let $\beta > 0$ and let G be a graph of order n without isolated vertices. For $d \in \{1, 2\}$, let n_d denote the number of vertices of degree d in G. If $4n_1 + 3n_2 \leq (1 - \beta)n$, then G contains a theta subgraph of order at most $(\frac{6}{\beta} + 1)(6 \log_2 n + 1)$.

These results enable us to prove that every large enough graph with minimum degree at least 2k + 1 contains k vertex-disjoint isomorphic theta subgraphs.

This is a joint work with Y. Egawa, S. Fujita and T. Sakuma. (Received September 14, 2016)