1125-05-1042 Luis Montejano* (luismontej@gmail), Av. San Isidro No 303, Juriquilla, Queretaro., 76230
Queretaro, Mexico. Rotors in triangles and tetrahedra. Preliminary report.
Rotors in triangles and tetrahedra. Abstract We say that a convex body K in euclidean n-space is a rotor of a polytope P if for each regid movement R there exist a translation t so that P is circumscribed about $t(R(K))$.

It is well known that if K is a convex plane figure which is a rotor in the polygon P , then every support line of K intersects its boundary in exactly one point, and if K intersect each side of P at the points $\mathrm{A}_{1}, \ldots \mathrm{~A}_{n}$, then the normals of K at these points are concurrent.

In this paper we shall prove that if P is a triangle, then there is a baricentric formula that describe the curvature of the boundary K at the points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$. We prove also that if K is a three dimensional convex body which is a rotor in a tetrahedron T, and if K intersect each face of T at the points $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$, then the normals lines of K at $\mathrm{x}_{1}, \mathrm{x}_{2}$, x_{3}, x_{4} generically belong to a one ruling of a quadric surface. (Received September 14, 2016)

