1125-05-1365 Ryan N Alweiss* (ryeguy10@gmail.com), 3 Ames Street, Cambridge, MA 02142. Ramsey Numbers of Odd Cycles Versus Larger Even Wheels.
The generalized Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest positive integer N such that any red-blue coloring of the edges of the complete graph K_{N} either contains a red copy of G_{1} or a blue copy of G_{2}. Let C_{m} denote a cycle of length m and W_{n} denote a wheel with $n+1$ vertices. In 2014, Zhang, Zhang and Chen determined many of the Ramsey numbers $R\left(C_{2 k+1}, W_{n}\right)$ of odd cycles versus larger wheels, leaving open the case where $n=2 j$ is even and $k<j<3 k / 2$. They conjectured that for these values of j and $k, R\left(C_{2 k+1}, W_{2 j}\right)=4 j+1$. In 2015, Sanhueza-Matamala confirmed this conjecture asymptotically, showing that $R\left(C_{2 k+1}, W_{2 j}\right) \leq 4 j+334$. In this paper, we prove the conjecture of Zhang, Zhang and Chen for almost all of the remaining cases. (Received September 16, 2016)

