1125-05-1458 Akira Saito* (asaito@chs.nihon-u.ac.jp), Nihon University, Japan, and Colton Magnant, Georgia Southern University. Forbidden subgraphs in edge-colored graphs.
For a graph G, a function $c: E(G) \rightarrow\{1,2, \ldots\}$ is called an edge-coloring, and the pair (G, c) is called an edge-colored graph. An edge-colored graph (G, c) is said to be rainbow if $c(e) \neq c(f)$ for every pair of distinct edges e and f of G. For a connected graph $H,(G, c)$ is said to be rainbow H-free if G does not contain a subgraph G^{\prime} which is isomorphic to H and $\left(G^{\prime},\left.c\right|_{E\left(G^{\prime}\right)}\right)$ is rainbow. For a graph H_{1} and its connected subgraph H_{2}, every rainbow H_{2}-free graph is trivially rainbow H_{1}-free. In this talk, we consider the opposite phenomenon and investigate the conditions which make a rainbow H_{1}-free graph rainbow H_{2}-free. (Received September 16, 2016)

