with $0 \leq b \leq r, a K_{r+1} \cup K_{b}$ has the maximum number of complete subgraphs, answering a question of Galvin. Gan, Loh, and Sudakov conjectured that $a K_{r+1} \cup K_{b}$ also maximizes the number of complete subgraphs K_{t} for each fixed size $t \geq 3$, and proved this for $a=1$. Cutler and Radcliffe proved this conjecture for $r \leq 6$. We investigate a variant of this problem where we fix the number of edges instead of the number of vertices. We conjecture that $a K_{r+1} \cup C(b)$, where $C(b)$ is the colex graph on b edges, maximizes the number of triangles among graphs with m edges and maximum degree r, where $m=a\binom{r+1}{2}+b, 0 \leq b<\binom{r+1}{2}$. We prove this conjecture for $r \leq 6$. (Received August 14, 2016)

