Given a linear ordering σ of $V(G)$, say that a pair of nonincident edges is separated by σ if both vertices of one edge precede both vertices of the other. The separation dimension $\pi(G)$ of a graph G is the minimum size of a set of vertex orderings such that every pair of nonincident edges is separated in some ordering. The fractional separation dimension $\pi_{f}(G)$ is the infimum of $|\mathcal{F}| / l$ over all $l \in \mathbb{N}$ and all lists \mathcal{F} of vertex orderings such that every pair of nonincident edges is separated in at least l orderings in \mathcal{F}.

We show that $\pi_{f}(G) \leq 3$ for every graph G, with equality if and only if $K_{4} \subseteq G$. On the other hand, there is no sharper upper bound even for triangle-free graphs; we show $\pi_{f}\left(K_{m . m}\right)=\frac{3 m}{m+1}$. Additionally, we show that the fractional separation dimension of graphs without cycles is at most $\sqrt{2}$. (Received August 15, 2016)

