Alexander Diaz-Lopez, Lucas Everham and Pamela E Harris* (peh2@williams.edu), Bronfman \#204, 18 Hosxey Street, Williamstown, MA 01267, and Erik Insko, Vincent Marcantonio and Mohamed Omar. Peak Sets of Graphs.

If G is a connected graph with n vertices denoted v_{0}, \ldots, v_{n-1}, then a permutation of length n corresponds to a labeling (or n-coloring) of the vertices of G. We say that a permutation π has a peak at the vertex v_{i} on G if the label of v_{i} is greater than all of the labels of v_{i} 's neighboring vertices, with the caveat that we do not allow peaks at vertices of degree 1 or 0 , as these are more like cliffs than peaks. The G-peak set of a permutation π is defined to be the set $P_{G}(\pi)=\left\{i \in[n]: \pi\right.$ has a peak at the vertex $\left.v_{i}\right\}$, where $[n]=\{1,2,3, \ldots, n\}$. Given a subset $S \subseteq V(G)$ we denote the set of all permutations with G-peak set S by $\mathcal{P}_{S}(G)=\left\{\pi \in \mathfrak{S}_{n} \mid P_{G}(\pi)=S\right\}$. We note that the peaks sets $P_{S}(n)$ originally studied by Billey, Burdzy, and Sagan corresponded to studying peak sets on the path graph P_{n}, i.e., $P_{S}(n)=\mathcal{P}_{S}(G)$ where $G=P_{n}$. In this talk, we present a recursive formula for enumerating $\left|\mathcal{P}_{S}(G)\right|$ and provide closed formulas for the number of permutations with a given peak set for a collection of interesting families of graphs. (Received September 08, 2016)

