James A Sellers* (sellersj@psu.edu), Department of Mathematics, Penn State University, 104 McAllister Building, University Park, PA 16802. A Combinatorial Proof of a Relationship Between Maximal $(2 k-1,2 k+1)$-cores and $(2 k-1,2 k, 2 k+1)$-cores.
Integer partitions which are simultaneously t-cores for distinct values of t have attracted significant interest in recent years. When s and t are relatively prime, Olsson and Stanton have determined the size of the maximal (s, t)-core $\kappa_{s, t}$. When $k \geq 2$, a conjecture of Amdeberhan on the maximal $(2 k-1,2 k, 2 k+1)$-core $\kappa_{2 k-1,2 k, 2 k+1}$ has also recently been verified by numerous authors.

In this work, we analyze the relationship between maximal $(2 k-1,2 k+1)$-cores and maximal $(2 k-1,2 k, 2 k+1)$-cores. In previous work, Nath noted that, for all $k \geq 1$,

$$
\left|\kappa_{2 k-1,2 k+1}\right|=4\left|\kappa_{2 k-1,2 k, 2 k+1}\right|
$$

and requested a combinatorial interpretation of this unexpected identity. Here, using the theory of abaci, partition dissection, and elementary results relating triangular numbers and squares, we provide such a combinatorial proof. This is joint work with Rishi Nath. (Received September 09, 2016)

