1125-05-854 Nina V Zubrilina* (nina57@stanford.edu). Dimension and edge dimension: random graphs and counterexamples.
Let $G(V, E)$ be a connected simple undirected graph. The distance between an edge $e=v_{1} v_{2}$ and a vertex v is defined as $d(e, v)=\min \left\{d\left(v_{1}, v\right), d\left(v_{2}, v\right)\right\}$. A set $S \subset V$ generates E if for any $e_{1} \neq e_{2} \in E$ there exists $s \in S$ such that $d\left(e_{1}, s\right) \neq d\left(e_{2}, s\right)$. The cardinality of the smallest generating set of E is called the edge metric dimension of G and denoted $\operatorname{edim}(G)$. We investigate various properties of $\operatorname{edim}(G)$. We determine edim of the random graph $G(n, p)$ for constant $p \in(0,1)$. We also classify the graphs for which $\operatorname{edim}(G)=n-1$ and show that $\frac{\operatorname{dim}(G)}{\operatorname{edim}(G)}$ isn't bounded from above (here $\operatorname{dim}(G)$ is the standard metric dimension of G). Lastly, we compute $\operatorname{edim}\left(G \square P_{n}\right)$ and $\operatorname{edim}\left(G+K_{1}\right)$. (Received September 12, 2016)

