1125-11-1114 Edray H Goins (egoins@math.purdue.edu) and Alejandra Alvarado* (aalvarado2@eiu.edu). Arithmetic Progressions on Conic Sections.
The set $\{1,25,49\}$ is a 3 -term collection of integers which forms an arithmetic progression of perfect squares. We view the set $\{(1,1),(5,25),(7,49)\}$ as a 3 -term collection of rational points on the parabola $y=x^{2}$ whose y-coordinates form an arithmetic progression. In this exposition, we provide a generalization to 3 -term arithmetic progressions on arbitrary conic sections \mathcal{C} with respect to a linear rational map $\ell: \mathcal{C} \rightarrow \mathbb{P}^{1}$. We explain how this construction is related to rational points on the universal elliptic curve $Y^{2}+4 X Y+4 k Y=X^{3}+k X^{2}$ classifying those curves possessing a rational 4-torsion point. (Received September 14, 2016)

