1125-11-2197 Ryan William Matzke* (matzk053@umn.edu), 1920 South 1st Street, Unit 506, Minneapolis, MN 55454. Looking for Sum-Freedom: The Maximum Size of (k, l)-sum-free Sets. Preliminary report.
Let G be an Abelian group and let $A \subseteq G$. For any $h \in \mathbb{N}_{0}$, we define the h-fold sumset of A as

$$
h A=\left\{\sum_{i=1}^{h} a_{i}: a_{i} \in A\right\}
$$

For $k, l \in \mathbb{N}_{0}$, with $k>l$, we say that A is (k, l)-sum-free if $k A \cap l A=\emptyset$. Sets that satisfy this for $k=2$ and $l=1$ are often simply called sum-free sets. In 2005, Green and Ruzsa we able to find the maximum size of a sum-free subset of any finite Abelian group. Using results from Bajnok, Plagne, and Hamidoune, we can begin finding the maximum size of (k, l)-sum-free subsets of finite abelian groups through the use of (k, l)-sum-free arithmetic progressions. (Received September 19, 2016)

