1125-11-2249 Nathan Kaplan* (nckaplan@math.uci.edu), Gautam Chinta (gchinta@ccny.cuny.edu) and Shaked Koplewitz (shaked.koplewitz@yale.edu). Counting lattices by cotype.

The short integer solution (SIS) problem asks, given m uniformly random elements g_1, \ldots, g_m from $(\mathbb{Z}/q\mathbb{Z})^n$ to find an integer vector (x_1, \ldots, x_m) of small norm such that $x_1g_1 + \cdots + x_mg_m = 0$. This problem plays an important role in the theory of worst-case to average-case reductions for lattice problems developed by Ajtai. This naturally leads to finding short vectors in sublattices L of \mathbb{Z}^m with $\mathbb{Z}^m/L = (\mathbb{Z}/q\mathbb{Z})^n$. In the generalized version of this problem we replace $(\mathbb{Z}/q\mathbb{Z})^n$ with a more general finite abelian group G.

The cotype of an *n*-dimensional lattice L is the finite abelian group \mathbb{Z}^n/L . What properties do we expect for the cotype of a randomly chosen sublattice of \mathbb{Z}^n ? How many sublattices have cotype G? We discuss these and other problems and explain a connection to the Cohen-Lenstra heuristics from number theory. (Received September 20, 2016)