1125-11-3154 Mojtaba Moniri* (m-moniri@wiu.edu). Diophantine questions on a familiar limit.
This is a proposed UGR project on some plausible Diophantine-analytic identities as $\frac{\sin x}{x}$ converges to 1 along certain values $x \rightarrow 0$. Using $\csc ^{2} x=\frac{1}{x^{2}}+\frac{1}{3}+\frac{x^{2}}{15}+\mathcal{O}\left(x^{4}\right)$ about 0 , as $m \rightarrow \infty$ one has $\frac{1}{4} \csc ^{2} \frac{\pi}{2^{m+2}}=\frac{4^{m+1}}{\pi^{2}}+\frac{1}{12}+\frac{\pi^{2}}{15 \times 4^{m+3}}+\mathcal{O}\left(4^{-2 m}\right)$. We wrote this with $\frac{1}{4}$ and $m+2$ on the left to go with $\frac{1}{\sqrt{2}}=\frac{1}{4} \csc ^{2} \frac{\pi}{2^{m+2}}$. We ask whether

$$
\left\lfloor\frac{1}{4} \csc ^{2} \frac{\pi}{2^{m+2}}\right\rfloor=?\left\lfloor\frac{4^{m+1}}{\pi^{2}}+\frac{1}{12}\right\rfloor(?)
$$

for all m. We similarly raise the questions $\left\lfloor\frac{1}{4} \csc ^{2} \frac{3 \pi}{2^{m+3}}\right\rfloor=?\left\lfloor\frac{4^{m+2}}{9 \pi^{2}}+\frac{1}{12}\right\rfloor$ (?),
$\left\lfloor\frac{1}{4} \csc ^{2} \frac{\pi}{3 \times 2^{m+2}}\right\rfloor=?\left\lfloor\frac{9 \times 4^{m+1}}{\pi^{2}}+\frac{1}{12}\right\rfloor(?)$, and $\left\lfloor\frac{1}{4} \csc ^{2} \frac{5 \pi}{12 \times 2^{m}}\right\rfloor=?\left\lfloor\frac{9 \times 4^{m+1}}{25 \pi^{2}}+\frac{1}{12}\right\rfloor(?)$.
[Using Mathematica, we verified all four when $m \leq 20,000$.] (Received September 21, 2016)

