1125-13-974 Sarah M. Fleming and Lena Ji^{*}, lji@math.princeton.edu, and S. Loepp, Peter M. McDonald, Nina Pande and David Schwein. Strange Formal Fibers: A Counterexample.

Let R be a local ring with maximal ideal \mathfrak{m} , and let \hat{R} be its completion with respect to \mathfrak{m} . Completion induces a morphism $\operatorname{Spec} \hat{R} \to \operatorname{Spec} R$ given by $\mathfrak{q} \mapsto \mathfrak{q} \cap R$, and for each prime ideal $\mathfrak{p} \in \operatorname{Spec} R$, the formal fiber of R at \mathfrak{p} is defined to be the preimage of \mathfrak{p} under this map. The dimension of the formal fiber of R at \mathfrak{p} – that is, the maximal length of a chain of prime ideals of \hat{R} lying over \mathfrak{p} – is denoted $\alpha(R, \mathfrak{p})$. In many cases, the dimensions of formal fibers are well-understood; for most rings, $\alpha(R, \mathfrak{p}) = \dim R - \operatorname{ht} \mathfrak{p} - 1$.

Heinzer, Rotthaus, and Sally have asked, given an excellent local integral domain R such that $\alpha(R, (0)) > 0$, if the set of height one prime ideals \mathfrak{p} such that $\alpha(R, \mathfrak{p}) = \alpha(R, (0))$ is finite. Given previous results, the expectation might be an affirmative answer. We construct a non-excellent counterexample where every height one prime ideal \mathfrak{p} of R has the property that $\alpha(R, \mathfrak{p}) = \alpha(R, (0))$. This talk is based on joint work completed at the Williams College REU with Sarah Fleming, S. Loepp, Peter McDonald, Nina Pande, and David Schwein. (Received September 13, 2016)