1125-34-1924
Paul Eloe*, 300 College Park, Dayton, OH 454692316, and Tyler Masthay, 300 College Park, Dayton, OH 454692316. Uniqueness implies existence of solutions for two-point boundary value problems for fractional differential equations.
Let $a<b$ and assume $1<\alpha \leq 2$. For each $a<x_{1}<x_{2}<b, y_{1}, y_{2} \in \mathbb{R}$, we consider the two-point conjugate type boundary value problem for the fractional differential equation

$$
\begin{gather*}
D_{* x_{1}}^{\alpha} y(x)=f\left(x, y(x), y^{\prime}(x)\right), \quad x_{1}<x<b, \tag{1}\\
y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2}, \tag{2}
\end{gather*}
$$

where $D_{* x_{1}}^{\alpha} y(x)$ denotes the Caputo fractional derivative of order α. We obtain the following analogue of a well-known result for ordinary differential equations: if
(A) $f:(a, b) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous,
(B) if for each $a<x_{1}<b, y_{1}, m \in \mathbb{R}$, solutions of (1) satisfying initial conditions

$$
y\left(x_{1}\right)=y_{1}, \quad y^{\prime}\left(x_{1}\right)=m
$$

are unique and extend to all of $\left(x_{1}, b\right)$, and
(C) if for all $a<x_{1}<x_{2}<b, y_{1}, y_{2} \in \mathbb{R}$, solutions of (1), (2) are unique, when they exist,
then for all $a<x_{1}<x_{2}<b, y_{1}, y_{2} \in \mathbb{R}$, solutions of (1), (2) exist. (Received September 19, 2016)

