Maximum Length of k-bounded, t-avoiding Zero-sum Sequences over \mathbb{Z}.
Let \mathcal{S} be a multiset of integers. We say \mathcal{S} is a zero-sum sequence if the sum of its elements is 0 . We study zero-sum sequences whose elements lie in the interval $[-k, k]$ such that no subsequence of length t is also zero-sum. Augspurger, Minter, Shoukry, Sissokho, and Voss show that there are arbitrarily long zero-sum sequences with these restrictions unless t is divisible by $\operatorname{LCM}(2,3,4, \ldots, 2 k-1)$. We confirm a conjecture of these authors that for k and t such that this divisibility condition holds, every zero-sum sequence of length at least $t+k^{2}-k$ contains a zero-sum subsequence of length t, and that this is the minimal length for which this property holds. (Received September 01, 2016)

