1125-46-2185 Scott A. Atkinson* (scott.a.atkinson@vanderbilt.edu). Minimal faces and Schur's Lemma for embeddings into $R^{\mathcal{U}}$.
As shown by N. Brown in 2011, for a separable II_{1}-factor N, the invariant $\operatorname{Hom}\left(N, R^{\mathcal{U}}\right)$ given by unitary equivalence classes of embeddings of N into $R^{\mathcal{U}}$-an ultrapower of the separable hyperfinite II_{1}-factor-takes on a convex structure. This provides a link between convex geometric notions and operator algebraic concepts; for instance, extreme points are precisely the embeddings with factorial relative commutant. The geometric nature of this invariant provides a familiar context in which natural curiosities become interesting new questions about the underlying operator algebras. For example, consider the following simple question. Can four extreme points have a planar convex hull?

In this talk we we will generalize the characterization of extreme points by showing that given an embedding π : $N \rightarrow R^{\mathcal{U}}$, the dimension of the minimal face containing the equivalence class $[\pi]$ is one less than the dimension of the center of the relative commutant of π. At the same time, we will establish the "convex independence" of extreme pointsproviding a negative answer to the above question. Along the way we make use of a version of Schur's Lemma for this context. (Received September 19, 2016)

