1125-47-1910Lauren Sager* (lbq32@wildcats.unh.edu), Kingsbury Hall, 33 Academic Way, Durham, NH
03824. Invariant subspaces for triangular algebras in Schatten p-classes.

In this talk, we seek to characterize subspaces of the Schatten *p*-classes on an infinite dimensional Hilbert space \mathcal{H} , which are invariant under lower triangular algebras. In doing so, we prove a Beurling-Blecher-Labuschagne theorem for H^{∞} -invariant subspaces of $L^{p}(\mathcal{M}, \tau)$ where \mathcal{M} is a von Neumann algebra with semifinite, faithful, normal tracial weight $\tau, 0 , and <math>H^{\infty}$ is an non-commutative Hardy space, similar to those defined by Arveson. As an application of the main result, we completely characterize all H^{∞} -invariant subspaces of $L^{p}(\mathcal{M} \rtimes_{\alpha} \mathbb{Z}, \tau)$ where $\mathcal{M} \rtimes_{\alpha} \mathbb{Z}$ is the non-self-adjoint crossed product of a von Neumann algebra \mathcal{M} by an action α on \mathcal{M} . Then, we are able to completely characterize all lower triangular subalgebra-invariant subspaces of the Schatten *p*-class for 0 . Our result answered a questionasked implicitly by McAsey, Muhly and Saito in 1979. (Received September 19, 2016)