1125-47-2024 Waleed K. Al-Rawashdeh* (walrawashdeh@mtech.edu), Montana Tech, West Park Street, Butte, MT 59701. Essential Norm of Weighted Composition Operators on Bargmann-Fock Spaces. Let φ be an entire self-map of the *n*-dimensional Euclidean complex space \mathbb{C}^n and ψ be an entire function on \mathbb{C}^n . A weighted composition operator induced by φ with weight ψ is given by $(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z))$, for $z \in \mathbb{C}^n$ and f is entire function on \mathbb{C}^n . For any p > 0 and $\alpha > 0$, the Bargmann-Fock $\mathcal{F}^p_{\alpha}(\mathbb{C}^n)$ consists of all entire functions f on \mathbb{C}^n such that $\|f\|_{p,\alpha}^p = \int_{\mathbb{C}^n} |f(z)|^p e^{\frac{-\alpha p}{2}|z|^2} dv(z)$ is finite. In this talk, we study weighted composition operators between Bargmann-Fock spaces $\mathcal{F}^p_{\alpha}(\mathbb{C}^n)$ and $\mathcal{F}^p_{\alpha}(\mathbb{C}^n)$ for $0 < p, q < \infty$. In particular, we characterize the boundedness and compactness of these operators, when $0 < p, q < \infty$. We also present an estimate of the essential norm of these operators, when 1 . (Received September 20, 2016)