version of Koldobsky's slicing inequality.
In this talk we will discuss an answer to a question of Alexander Koldobsky and present a discrete version of his slicing inequality. We let $\# K$ be a number of integer lattice points contained in a set K. We show that for each $d \in \mathbb{N}$ there exists a constant $C(d)$, depending on d only, such that for any origin-symmetric convex body $K \subset \mathbb{R}^{d}$ containing d linearly independent lattice points

$$
\# K \leq C(d) \max _{\xi \in S^{d-1}}\left(\#\left(K \cap \xi^{\perp}\right)\right) \operatorname{vol}_{d}(K)^{\frac{1}{d}}
$$

where ξ^{\perp} is the hyperplane orthogonal to a unit vector ξ. We show that $C(d)$ can be chosen asymptotically of order $O(1)^{d}$ for hyperplane slices. Additionally, we will discuss some special cases and generalizations for this inequality. (Received September 12, 2016)

