1125-55-2457 Hein van der Holst* (hvanderholst@gsu.edu), 30 Pryor St SW, Atlanta, GA 30303, and Robin Thomas and Sergey Norin. Decomposing 2-cycles.
For a graph $G=(V, E)$, a 2-cycle $A=\left[a_{e, f}\right]$ is an $E \times E$ matrix such that $a_{e, f}=0$ if e and f have a common vertex and each row and each column of A is a circulation on G. Examples of 2-cycles are 2-cycles coming from pairs of disjoint cycles of G. Also on each subgraph of G that is a subdivision of K_{5} or $K_{3,3}$, there is a 2 -cycle. It has been a conjecture that each 2-cycle can be written as a sum of these types of 2-cycles. For symmetric matrices, the presenter proved this in his work on a polynomial-time algorithm for finding a linkless embedding of a graph. For general matrices, this has recently been disproved by Barnett.

In this talk, we give a finite list of types of 2-cycles such that each 2-cycle is a sum of 2-cycles from this list. This solves a problem which has been open for over 40 years. We also show that for Kuratowski-connected graphs, it suffices to have 2-cycles coming from pairs of disjoint cycles of G and 2-cycles on subgraphs of G that are subdivisions of K_{5} or $K_{3,3}$. (Received September 20, 2016)

