Micah Chrisman* (mchrisma@monmouth.edu) and Robert Todd. Virtual Knots and the Multi-variable Alexander Polynomial of Boundary Links in the 3-Sphere. Preliminary report. A two component oriented link L = K₁ ⊔ K₂ in S³ is said to be a boundary link if there are Seifert surfaces Σ₁, Σ₂ for K₁, K₂, respectively, such that Σ₁ ∩ Σ₂ = Ø. Given a boundary link, when can the disjoint surfaces Σ₁ and Σ₂ be chosen so that Σ₁ is also a minimal genus Seifert surface for K₁? We discuss an obstruction arising from virtual knot theory when K₁ is a fibered knot. The obstruction relates the multi-variable Alexander polynomial of a boundary link (in the sense

of Gutérrez) to the Alexander polynomial of an almost classical knot (Boden-Gaudreau-Harper-Nicas-White). Examples utilizing the obstruction are given. (Received September 02, 2016)